Time-Dependent Dielectric Breakdown in High-Voltage GaN MIS-HEMTs: The Role of Temperature

Shireen Warnock, Allison Lemus, and Jesús A. del Alamo

Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT)

Purpose

- Understand time-dependent dielectric breakdown (TDDB) in GaN MIS-HEMTs
- Explore progressive breakdown (PBD) as a means of better understanding physics of gate dielectric degradation

Motivation

GaN Field-Effect Transistors (FETs) promising for high-voltage power applications \rightarrow more efficient & smaller footprint

Consumer Electronics

Centorido

Time-Dependent Dielectric Breakdown

- High gate bias → defect generation → catastrophic oxide breakdown
- Often dictates lifetime of chip

Dielectric Reliability in GaN FETs

AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs)

- Goals of this work:
 - What does TDDB look like in GaN MIS-HEMTs?
 - What is the temperature dependence of TDDB and what does it tell us about breakdown physics?

TDDB in GaN MIS-HEMTs

- Classic TDDB observed
- Studies to date focus largely on: breakdown statistics, lifetime extrapolation, evaluating different dielectrics
- Goal of this work: temperature dependence of TDDB

Experimental Methodology & Breakdown Statistics

Classic TDDB Experiment

Constant gate-voltage stress:

Experiment gives time to breakdown and shows generation of *stress-induced leakage current* (SILC)

Observing Progressive Breakdown

Classic TDDB experiment: $V_{Gstress}$ =12.6 V, V_{DS} =0 V

Near breakdown, I_G becomes noisy \rightarrow progressive breakdown (PBD)

Observing Progressive Breakdown

Classic TDDB experiment: $V_{Gstress}$ =12.6 V, V_{DS} =0 V

- Time-to-first-breakdown t_{1BD}: I_G noise appears
- Hard breakdown (HBD) time t_{HBD} : Jump in I_G, device no longer operational
- t_{PBD}: duration of progressive breakdown (PBD)

GaN Gate Breakdown Statistics

Statistics for time-to-first-breakdown t_{1BD} and hard breakdown t_{HBD}`

- Weibull distribution: $\ln[-\ln(1-F)] = \beta \ln(t) \beta \ln(\eta)$
- Nearly parallel statistics \rightarrow common origin for t_{1BD} and t_{HBD}

Understanding the Role of Temperature

TDDB Across Temperature

Constant gate-voltage TDDB stress:

- As T \uparrow , I_G \uparrow
- I_G evolution at each T nearly identical across 10 devices \rightarrow uniform device fabrication

GaN Breakdown Statistics

Weibull plots of time-to-first breakdown t_{1BD} (left) and hard breakdown time t_{HBD} (right)

- As T \uparrow , $t_{\rm HBD}$ and $t_{\rm 1BD}$ \downarrow
- Variation in Weibull slopes due to small sample size

GaN Breakdown Statistics

Correlation between time-to-first-breakdown t_{1BD} and PBD duration $\mathsf{t}_{\mathsf{PBD}}$ 10³ 10² t_{PBD} [s]

 $V_{GS,stress}$ =13 V

10⁴

V_{DS,stress}=0 V

(following E. Wu, IEDM 2007)

10¹

10⁰

10²

• t_{1BD} and t_{PBD} independent of one another \rightarrow after first breakdown, defects generated at random until HBD occurs

10³

t_{1BD} [s]

After Hard Breakdown

Lateral location of BD path: measure $I_D/(I_S+I_D)$ at $V_{DS}=0$ V

- Spread of BD locations across channel, no particular trend with T
- $L_{GD} > L_{GS} \rightarrow$ current preferentially flows through source terminal
- Fit line gives R_{Daccess}=5*R_{Saccess}

TDDB Activation Energy

Take the time t_{BD} where Weibull function = 0 (cumulative failure F=63.2%)

- E_A for first breakdown, hard breakdown nearly identical
 → likely common physical origin
- Very small E_A, unlike reports in Si CMOS or other GaN MIS-HEMTs

I_G Evolution During PBD

I_G during PBD follows exponential trend, consistent with PBD in Si

Fit with equation of the form $I_{G1}^* exp([t-t_{1BD}]/\tau_{PBD})$

I_G Evolution During PBD

Fit PBD regime with exponential for every measured temperature

- E_A for avg(τ_{PBD}) ~ 79 meV
- Close to E_A for 1BD, HBD \rightarrow suggests similar underlying mechanism

I_G Noise During PBD

- Does I_G noise increase or decrease with temperature?
- Find standard deviation of I_G and normalize by average I_G (because $I_G \uparrow$ as T \uparrow)

No trend over temperature \rightarrow origins of noise likely to be tunneling phenomenon

Conclusions

- Developed methodology to study TDDB and explore PBD in GaN MIS-HEMTs
- Classic $t_{\mbox{\tiny 1BD}}$ and $t_{\mbox{\tiny HBD}}$ statistics
 - Common physical origin for first breakdown and hard breakdown: parallel statistics, similar activation energies
 - However, t_{1BD} not predictive of t_{HBD}
- PBD characteristic time constant, τ_{PBD}, has E_A near that of 1BD, HBD (≈60-80 meV)
- I_G noise shows no temperature trend, suggests tunneling

Acknowledgements

Questions?